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Order and Disorder Lines in Systems with Competing 
Interactions: I. Quantum Spins at T = 0 

P. Rujlin 1,2 

Received March 15, 1982 

In the parameter space of systems with competing interactions there are specific 
trajectories called order (disorder) lines. Along these trajectories the competition 
between the different interactions effectively reduces the dimensionality of the 
system and the model can be exactly solved. It is shown that the order (disorder) 
trajectories end up at a multicritical point. The method of Peschel and Emery is 
used to determine the (anisotropic) critical behavior of the spin-spin correlation 
functions near the multicritical point. The quantum spin systems discussed here 
include the X Y Z  chain in a field, the straggered X Y Z  chain in a field, and a 
Hamiltonian version of a three-dimensional Ising model with biaxial competing 
interactions. 

KEY WORDS: Quantum spin systems; order; disorder; kinetic Ising 
model; duality transformation; Hamiltonian limit. 

1. INTRODUCTION 

In a remarkable paper Peschel and Emery (PE) (l) have recently shown how 
to determine disorder lines in quantum spin chains. Their method is based 
on the fact that for a special choice of the coupling constants the Hamilto- 
nian can be interpreted as the time evolution (Liouville) operator of the 
kinetic Ising model. This mapping holds on a given trajectory of the 
parameter space, called a disorder line (DOL) if the ground state is not 
degenerate (disordered phase) and an order line (OL) if the ground state is 
degenerate (usually a ferromagnetic phase). 
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There are disparate results in the literature regarding disorder (order) 
lines. They had been obtained maninly for the free-fermion models (an- 
isotropic antiferromagnetic triangular Ising model, (2~ the kagom6 Ising 
model, (3~ the quantum X Y  chain(4)). These results will be used to conjec- 
ture the properties of spin-spin correlation functions when the tempera- 
turelike parameter is changed near a disorder (order) line. 

The main conclusion of this series of papers is that the presence of 
DOL (OL) is a common phenomenon in models with competing interac- 
tions. The determination of these trajectories is very helpful for the con- 
struction of the phase diagrams and in the interpretation of experiments or 
Monte Carlo simulations. Moreover, the spin-spin correlation length may 
have a nonanalytic behavior along the DOL (OL), affecting the validity of 
high- (low-) temperature expansions. A detailed discussion of the general 
properties of DOL (OL) is given in Section 5. 

In this paper we discuss quantum 1/2-spin models at T =  0. The 
significance of these models is twofold. First, one has many real life 
magnetic materials which have a quasi-one-dimensional behavior. (5'6) Also, 
the spin-l/2 chain Hamiltonian is relevant for a variety of other systems, 
including highly conductive organic materials (7) or different quasi-one- 
dimensional systems bearing charge and/or  spin density waves. On the 
other hand, d-dimensional quantum spin Hamiltonians at T = 0 can be 
related through the transfer matrix formalism to (d + 1)-dimensional Ising- 
like models. For instance, the XYZ-cha in  Hamiltonian commutes with the 
transfer matrix of the eight-vertex model. (8'9) A less rigorous but more 
general relationship between transfer matrices of (d + 1)-dimensional Ising- 
like systems and d-dimensional quantum Hamiltonians at T = 0 is obtained 
in the so-called Hamiltonian limit. (1~ In this paper the PE method is used 
to determine DOL (OL) in the Hamiltonian limit of two- and three- 
dimensional Ising models with competing interactions, while in the succeed- 
ing paper a different method is used directly within the tranfer matrix 
formalism and is applied to the IRF (interactions-around-a-face) model, 
including the eight-vertex model. (11~ 

Our results are presented in the following order. In Section 2 the PE 
method is reviewed and applied to the X Y Z  chain in a field. The free- 
fermion case is discussed in detail as well as how the duality transformation 
maps the DOL into the OL. In Section 3, it is shown that the disorder 
trajectories end on a line of multicritical points. The critical exponents of 
the correlation length along the chain is ull = 1, while in the direction 
perpendicular to the chain ("time direction") one finds px = z �9 ulb' where z 
is the usual dynamic exponent. (12) The order trajectories also end on 
multicritical points, but with different critical properties. 
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In Section 4 the PE method is applied to a staggered (dimerized) X Y Z  
chain in a field and to the Hamiltonian limit of a three-dimensional Ising 
model on a hexagonal lattice with biaxial competing interactions. For this 
model one obtains a multicritical point with a characteristic anisotropic 
character (vlr = 1, v• = 2.125) at a finite temperature. A generalization of 
the concept of DOL (OL) and a discussion of their general properties is 
given in Section 5. 

2. THE P E S C H E L - E M E R Y  METHOD AND THE X Y Z  CHAIN 
IN A FIELD 

Consider first the one-dimensional Ising model: 

- / ~ H  elf = K~-] sjsj+ 1 (2.1) 
J 

where fl = 1/kBT and ~ = + 1. Following Glauber, (13) a master equation 
for the time-dependent distribution function 'I'((s/), t) can be written for 
the discrete Markoff process involving single spin flips(m4) : 

__d ,], = _ Lxtt (2.2) 
dt 

where 

L= w)/2(1- (2.3) 
J 

Here wj = wj(s/_ l,sj,s/+ l) gives the transition probability that sj changes 
into - s j  in a given time period./~/is the spin flip operator Pj~ = - ~ .  A 
general choice of w/satisfying the detailed balance condition is 

wj = fj exp( - s/hj) > 0 (2.4) 

where hj = hj(sj_,,s/+,) is the factor of sj in (2.1) andf j  is a non-negative 
function of the spins nearest neighbors to ~: 

f j = ( a ~ 1 7 6 1 7 6  , ao,a I > 0  (2.5) 

From (2.3) and (2.4) one gets 

L = ~, f/[ e x p ( -  sjhj) - Pj] (2.6) 
J 

One makes the connection to the quantum formalism (15) by writing 

�9 t ' ( s , , s 2 , . . . ,  SN) = ' I ' ( o { , o j , . . . ,  o~)10 + ) (2.7) 

IO+)=sj=+_, ~ [sl)ls2)' '" IsN)=I-Ij | (1)1 j (2.8) 
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and 

Pj = o 2 (2.9) 

Here o x and o z are the usual Pauli matrices. Note that ojxl0+ } = {0+ ) for 
all j = 1, 2 . . . . .  N. The Liouville operator L (2.6) is rewritten as 

L =~(ao)L ,o /+ ,  + Bcs/o:~+, + Co; + Do7_1o7~%, ) (2.10) 
J 

where 

A = �89 1 - aocosh2K ) 

B = - ao sinh 2K 
(2.11) 

c = - � 8 9  + ~1 )  

D = - �89 0 -  al) 

Implementing the duality transformation (z6) by introducing the bond Pauli 
operators, 

�9 /+ , /2  = o/o/+,  (2.12a) 

5x+,i: = 1-I o ;  (2.12b) 
k<j  

one obtains the dual operator of L: 

LD= ~ (A5~57+ , + n~i + C5%~+,- D~?5~+, ) (2.13) 
J 

Consider next the X Y Z  chain Hamiltonian in the following parame- 
terization: 

Hxyz = - E ( J [ (1  + y)rj~rj~+ l + (1 - y)rfTf+, + ArfTj+ 1] + 2hrf  } 
J 

(2.14) 

where without loss of generality we take y > 0. This Hamiltonian com- 
mutes with the transfer matrix of the symmetric eight-vertex model (8'9) if 
h = 0. The ground state energy and the elementary excitations can be 
calculated using Baxter's solution. (17'18) When Y = 0 the Hxx z Hamiltonian 
commutes with the transfer matrix of a six-vertex model. (ll'19) The ground 
state and the low-lying excitations can be calculated using the Bethe-ansatz 
method. (2~ Finally, if A = 0 (2.14) describes an X Y  chain which has been 
considered by different authors. (22'23) In particular, the spin-spin correla- 
tion functions have been calculated by Niemeijer (24) and by Barouch and 
McCoy. (4) For A = 0, h 2 + y2 > 1 Suzuki (2s) proved that (2.14) commutes 
with the transfer matrix of an anisotropic square Ising model. 
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Applying the inverse of the duality transformation (2.12) to (2.14) one 
obtains the dual of the Hxr  z as 

z z 2 ~ z nf f r  z = - ~ {J[(1 + y)~X + ( y _  1)of_fljxof+l + A~_1~+1] + hojOj+l} 
J 

(2.15) 

For A = 0 Stephen and Mittag have shown that Hffr commutes with the 
diagonal-to-diagonal transfer matrix of the triangular Ising model. (26) The 
correlation functions of (2.15) for A----0 are related to the correlation 
functions of the triangular Ising model calculated by Stevenson. (2) 

By comparing (2.10) (or (2.13)) to (2.15) (or (2.14)) it is clear that if 

1 -[- V = 1(0~0 "[- O/2) 

1 - = - 

(2.16) 
A = �89 1 -- a0cosh2K ) 

2 h / J  = a o sinh 2K 

the operator HDyz (Hxyz) is identical to L (L D) except for a constant 
factor and a constant shift of the ground state energy. By eliminating ao, 
al, and K from (2.16) this happens on the surface: 

+ ( h / j ) 2 =  _ 1)2 
(2.17) 

A < 1 -- Y (K is real) 

It follows that the ground state of L 

K 2) exp( XIteq ~ exp( 7 ~j ,.sj+ = I@o) = K ~, ofof+ 1) [0+ ) (2.18) 

is also the ground state of Hffr z on the surface (2.17), which is shown in 
Fig. I. The ground state (2.18) is unique and therefore (2.17) represents a 
disorder line in H ffyz. 

Assuming periodic boundary conditions the transformation (2.12a) 
maps ~ + 1  into ~ r f ,  while the transformation (2.12b) maps the state 
10+ ) into itself or into the state [ 0  ), where ~x]0_ ) =  - 1 0  ) for all 

j = 1, 2 . . . . .  N. Taking into accunt also the parity of the ground state 
(2.18), one finds that the ground state of L ~ (Hxrz)  is given by 

,7- z Iq% ~) = exp( K ~-~,j )(10 + ) +  j0 - )) (2.19) 

and is degenerate with the state 

]@g)_ = exp( ~ ~ V)(I0+ ) - 1 0 _  )) (2.20) 
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Fig. 1. The order (disorder) surface in the Hxg z (H~rz). Except for the line h/J = O, 
A = 1 - 7, it is a cone ending on the Heisenberg point A = 1, h/J  = 0, y = 0. The line of 
rnulticritical points y = 0 is shown by a dotted line. 

Accordingly,  the trajectory (2.17) is called an order line in H x r  z or L ~ 
Note  that  ( if0[ if'0) is just  the par t i t ion funct ion of a one-dimensional  Ising 
chain (2.1) with neares t -neighbor  (n.n.) interactions,  while ( i f ~  [if0 z~) is the 
part i t ion funct ion of noninteract ing Ising spins in an external  field. 

The  order  (disorder) surface is the half-cone shown in Fig. 1. At  A = 0 
the order line was found  by  Barouch and  McCoy.  (4~ Its dual  counterpar t ,  
the disorder line for A = 0, was discussed by  Stevenson (2~ and  has exactly 
the fo rm (2.17). (~ These calculat ions revealed also a very interesting 
proper ty  of the correlat ion functions. The  correlat ion funct ions have  the 
usual exponential  decay outside the cone but  are modula ted  by  a varying 
characteristic wave vector  inside the cone. This feature is p robab ly  present  
also for  A 4: 0. Another  interesting result of the free fe rmion calculat ions (z) 
on H ~  is that  the correlat ion length between spins along the chain, ~ll' 
has a cusplike min imum.  This involves a nonanalyt ic  behavior  on (2.17), 
which had  been also found  in the X Y  model.  (4) In  Section 5 we shall 
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present some general arguments favoring the view that exact high- (low-) 
temperature expansions are not convergent on the disorder (order) surfaces. 

3. CRITICAL BEHAVIOR NEAR MULTICRITICAL POINTS 

Consider first the operator Hx~ (2.15). Its ground state behaves 
effectively as the one-dimensional Ising model (2.1) on the disorder surface 
(2.17). This underlying model, in turn, exhibits a phase transition at 
K =  • oo. From (2.16) this happens for 

3' = 0, h = + J ( 1  - A) (3.1) 

o r  

h h = + (3.2)  0 < 7 < o 0 ,  A--+-oo,  7 ~ •  but 7 _ 

The lines (3.1) and (3.2) are lines of multicritical points and all these points 
have critical properties similar to the T = 0 multicritical point of the axial 
next-nearest-neighbor Ising (ANNNI) model. (1'27'28) 

The spin-spin correlation function along the chain is given by 

G~(z) = <'I'~176 
(q% i~0) (3.3) 

On the disorder surface (2.17) it corresponds to the spin-spin correlation 
function of the one-dimensional Ising model (2.1). Using Eqs. (2.16) one 
finds s that 

~ l ] ~ y  -vii = y - 1  (3.4) 

when y + 0+ along (2.17). A similar result (vii = 1) holds when approaching 
the multicritical line (3.2). 

A remarkable advantage of the Peschel-Emery method is that it allows 
also for the calculation of the correlation length in the direction perpendic- 
ular to the chain (y or "time" direction). From the Hamiltonian limit 
formalism (10) it follows that one might interpret the HxOrz Hamiltonian as 
the extreme anisotropic limit of a two-dimensional Ising spin model with 
multiple interactions (see also the following paper). The correlation length 
in the direction perpendicular to the chain is then related to the inverse of 
the mass gap: 

~j71 "~ E 1 - E 0 ~ - -  ~ (3.5) 

Since on (2.17) the spectra of Hffr z and L are identical, so is the mass gap 
(3.5). On the other hand, the mass gap of the Liouville operator (2.6) 
corresponds to the inverse of the longest relaxation time, % which diverges 
at [K[---> oo with the dynamic exponent A = zvrl. Therefore the correlation 
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function between spins in the direction perpendicular to the competition 
axis shows a singular behavior related to the dynamic slowing down of the 
effective Ising model (2.1). In our case z = 3, vLi = 1, so 

~& w e  -v •  (3.6) 

for 7 4 0 +  on (2.17). The peculiar value z = 3 (29) (the "normal" value in 
one dimension is z = 2 for the Glauber model) is due to the fact that as 
•--->0+ the factor fj (2.5) becomes zero for every configuration of clusters 
with at least two parallel nearest-neighbor spins. All these states are then 
frozen in the ground state of L, which corredponds--not accidentally--to 
the T = 0 multicritical point of the ANNNI model. (1'3~ 

What is the corresponding behavior for order lines, that is, for the 
operator H x r  z on (2.17)? In this case the ground state represents the 
Boltzmann distribution of an Ising model in an external field. Therefore the 
spin-spin correlation function G)~ (3.3) is a constant independent of R, 
G~(z)  = m 2, where m~ is the magnetization per spin. When K ~  ~ ( K ~  
- oo) the system is frozen in the II"1"" " �9 '[') (HA,' " " $)) state. The multicri- 
tical points (3.1)-(3.2) are in the same universality class as the y = 0, h = 1, 
A = 0 point of the X Y  model, ~4) except for the KDP-like first-order 
transition point ~2~ at the isotropic Heisenberg point 7 = 0, h = 0, A = 1. 

4. FURTHER APPLICATIONS OF THE PESCHEL-EMERY METHOD 

The PE method can be generalized in two ways. One may start, for 
example, with more complicated models than (2.1) when constructing the L 
operator. Another possibility is to change the dynamic behavior by allow- 
ing for more simultaneous spin flips, or by enforcing different conservation 
laws.(12,~4) 

Our first example is the search for order lines in the dimerized 
(staggered) X Y Z  chain, which is an important model from both the 
experimental (6) and theoretical points of view. (3~) One starts with the 
one-dimensional staggered Ising model: 

- fl Heel = ~ (K]S2kS2k+ 1 + K2S2k+ IS2k+2) 
k 

(4.1) 

Following the same steps as those leading to (2.13) one first chooses the 
transition probabilities as 

t [0~0 "{" 0/1 0~0 + 0~1 ) ' e x p ( -  
wak = 2 -1- ~ S2k_ 1S2k+ ] S2kh2k) 

( /~0+ ]~1 ~0-- ~1 )exp(_S2k+lh2k+l ) W2k+l = ~ "l- ~ S 2 k S 2 k + 2  

(4.2) 
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and after some algebraic manipulations one gets the dual of the Liouville 
operator as 

L D= 2 ( n  D 4- L 2 D + I )  (4.3) 
k 

where 

and 

L2~ = /1 l'r2Zk,2Zk+ 1 + Bl '2Zk 4- Cl,2Xk'r2Xk+ 1 - -  Ol'Y2k'"2k+ 1 (4.4a) 

D __ z z z L2k+ 1 - -  A 2 " 2 k +  1"2k+2 4- B2T2k+ 1 

x ,Fx __ 4- C 2 " 2 k +  1 2k+2 D2T~k + ffr{~+2, (4.4b) 

- a o + a ,  B o - B ]  + B 0 + B ~  A l -  a~ a l C + + - - C - ,  A 2 - - - C  + - - C -  2 2 2 2 

B1.2=[( a ~  ~ + ~  f l ~  + ( a ~  S - +  T "1- ~ /~0 -{- /~1 )S  T- ] 

ao + al Bo + fll 
C1 = - 2 ' C2 = 2 ' 

ao - "1 B o - / ~ l  
Dl = 2 ' DE = 2 

(4.5) 

C -+ = ~ [cosh(K 2 + K,) + cosh(K 2 - K 1 )  ] 

S -+ ___ �89 [sinh(K 2 + K1) ----- sinh(K 2 - / s  ] 

This dual form of the Liouville operator should be compared to the 
Hamiltonian of the dimerized XYZ chain: 

H~t~ g = - Z (H2k + 2hlr~K + "rH2k+, + 2hz'~k+l} (4.6) 
k 

where 
/-/j = (1 + y)'rjxTf+, + (1 - y),f~)Y+, + A , / , j z +  1 (4.7) 

By matching the corresponding couplings of (4.3) and (4.6) and then 
eliminating a 0, a 1, flo, Bl, Kl, and K 2 one obtains a rather complicated 
formula for the order surface of the dimerized Hamiltonian (4.6). The result 
for the free-fermion case A = 0 is 

(1 - 72)(1 + , )2= 4hlh 2 (4.8) 

The second example is related to the three-dimensional Ising model 
shown in Fig. 2. In this model hexagonal planes are connected by vertical 
nearest-neighbor ferromagnetic interactions. Within the hexagonal planes 
one has a ferromagnetic nearest neighbor interaction K~, a next-to-nearest 
neighbor antiferromagnetic interaction, -IK2], and a four-spin coupling 
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K 4 > 0, as shown in Fig. 2b. At T -- 0 the spins form ferromagnetic chains 
in the vertical direction, while within the hexagonal plane one has the basic 
configurations shown in Fig. 3. The emerging ordered phases and the T --- 0 
phase diagram are also shown. The hexagonal plane-to-hexagonal plane 
transfer matrix of this model can be written as 

T = T1T 2 (4.9) 

where T 1 is the self-energy of a plane, 

r 1 = exp ~. ( k, ~ orzor~,~ - [K 21 ~,o.~,~~ + g46ZOrZ.l Or(2 Orz,3 / (4.10 ) 
r k a a l ~ a 2  ) 

r runs over the lattice sites of the hexagonal lattice and a = 1, 2, 3 over the 
nearest neighbors. T 2 represents the interaction between two planes and is 

l 
Z 

x/ 
a) 

b) 
Fig. 2. The hexagonal Ising model with biaxial competing interactions within the hexagonal 
planes. The interaction between planes is ferromagnetic, J z  < 0. Within the planes (Fig. 2a) 
one has  a ferromagnetic interaction (Jl  < 0) between the spin s r and  the nearest neighbors sr,~, 
a = 1, 2, 3; an  antiferromagnetic interaction (J2 > 0) between spins Sr,~ and st,,2 (a I v ~ a2) and  
a four-spin interaction J4 < 0 between spins s r, sr, 1, s~,2, and s~, 3 . 
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Fig. 3. The T = 0 possible ground states of the hexagonal Ising model with competing 
interactions. The different ordered phases are denoted by A, B, and C. The T = 0 phase 
diagram is also shown. 

g i v e n  b y  

= constexp(  oX) 
where 

K7 = - �89 In tanh K z ( 4 . 1 2 )  

When taking the (Hamiltonian) limit gz*,Kl, lg2t, g4--->O ( b u t  keeping 
constant the ratios x 1 -- fK2I/K1; ~2 = K 4 / K I ;  .r = K * / K O  one can expand 
the exponents in (4.10), (4.11), keep only the linear terms in couplings and 
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omit the constant term. What is left is a 1/2-spin Hamiltonian defined on a 
honeycomb lattice: 

~--" - -  "2~ rOr,  a - -  Ir E Or, a,Or,a2 -~" ff20"rOr, lOr,2Or, e q- ~-O; (4.13) 
Ot OL15~= Ot 2 

Next, consider a two-dimensional Ising model on a hexagonal lattice: 

- -  f l  H e f t  = K e f f  E SrSr, a (4.14) 
r ~  

The corresponding LiouviUe operator is constructed through the same steps 
as before and choosing fr = 1, one gets 

rOr ,a  - -  DorOr, lOr,2Or, 3 Or x (4.15) 

with 

A = �88 (cosh 3 K  elf + 3 cosh K eff) 

B = cosh Kefrsinh2K eft 
(4.16) 

C = sinh Keffcosh2K elf 

D = sinh3K eft 

Matching the couplings of (4.13) to (4.15), (4.16) one obtains the trajectory 
given by 

/s = if2 ' ,1.2 = (1 - K2)3/1~2 (4.17) 

By changing the temperature (~ ' r )  one moves on (4.17) from high tempera- 
tures to low temperatures until the point 

x~ = ~2 = tanh2Kc hex = �89 (4.18) 

where the two-dimensional hexagonal Ising model undergoes a phase 
transition. The critical exponents of ill and ~• are, respectively, 

vii = 1 

v• = 2.125 

Note that v• equals the dynamic critical exponent, z, of the two-dimen- 
sional kinetic Ising model. ~32) Below the multicritical point (4.18) the 
ground state is doubly degenerate and one has an order line ending at z = 0 
(T = 0) on the multicritical point Kl = ~2 = 1 (see Fig. 3). It seems possible 
that this three-dimensional Ising model has an incommensurate (floating) 
phase. In that case the multicritical point (4.18) is a good candidate for 
being a multicritical Lifshitz point. It is also plausible that below % (4.18) 
the order line (4.17) is lying on the ferromagnetic boundary. 
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5. DISCUSSION AND CONCLUSIONS 

The Peschel-Emery method is an elegant and powerful method for 
determining the ground state and the ground state energy along disorder 
(order) trajectories in quantum spin systems at T = 0. Interesting enough, it 
suggests also a way to measure the dynamic critical exponent z from static 
measurements (through the relation 1, a = z .  Prl)" It is clear that the very 
existence of these special trajectories is a result of the anisotropic competing 
interactions. The question is then whether this is a general feature of all 
such models or not? In order to discuss this basic question it is useful to 
consider the following one-dimensional Hamiltonian: 

- E ' o z  z _ z q I..joj+1 7~+q + >i 2 (5.1) 
J 

For q = 2 this Hamiltonian represents a special limit of the row-to- 
row transfer matrix of the axial-next-nearest-neighbor Ising (ANNNI) 
model. (1'33) In general, the model (5.1) has a n.n. ferromagnetic interaction 
(the first term of the sum), competing with a qth-neighbor antiferromag- 
netic interaction (the second term). The last term of (5.1) plays the role of 
the temperature operator. For q = 2 (ANNNI model) Peschel and Emery 
have demonstrated the presence of a disorder line/l) [This line is the 
intersection of the (2.17) surface with the plane ~, = 1.] For q = 3, however, 

A 

the H(q---3) operator (5.1) cannot be mapped into the time evolution 
operator of the Ising model (2.1), no matter what the prescribed dynamics 
might be. In other words, the PE method does not work for H(3). A more 
general definition of the ~($) disorder trajectory can be given as 

I1(~, r) = minimum (r fixed) (5.2) 

independently of the fact whether the ground state energy of (5.1) can or 
cannot be exactly calculated on ~(z). I suggest that the models exhibiting 
disorder (order) trajectories have the following properties: 

(A) When changing the competition ratio K at fixed (high) temperature 
z the spin-spin correlation function along the competition axis is exponen- 
tially decaying for x < ~0") but is modulated by a (K, ~-)-dependent wave 
vector for x > ~(~-). This change should be detectable in experiments for 
Monte Carlo simulations and should not be confused to a disorder- 
incommensurate phase transition. 

(B) The minimum of ~ II is related to the crossing of the second and the 
third largest eigenvalues of a corresponding transfer matrix (see next pa- 
per). In general one should expect the same cusplike minimum as in the 
triangular Ising model, (2) involving a nonanalytical behavior o n  ~('r). (2'4) 
This fact explains the poor convergence of the high-temperature expansions 
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in the ANNNI Hamiltonian H(q = 2) (5.1).  (33) It shows that one must be 
very cautious when using exact series expansions to determine phase 
boundaries in systems with competing interactions. 

(C) Usually the ~(T) line should end on a multicritical point with a 
strong anisotropic character (see Section 3). 

(D) In some cases the ground state energy of the model can be exactly 
calculated on ~(~'). If this is not the case, approximate methods can be used 
to determine ~(q.).(34) 

Finally, let me remark that the Peschel-Emery method works only for 
quantum-spin Hamiltonians. Since in many cases these Hamiltonians are 
rigorously or approximately related to the transfer matrix of hitcher- 
dimensional classical spin systems one may ask if it is possible to find order 
and disorder trajectories in such models. The answer is positive and is 
detailed in the second paper. 
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